Transformasi Pembelajaran Kimia melalui Pemanfaatan Kecerdasan Buatan (AI) pada Era Society 5.0
DOI:
https://doi.org/10.32585/edudikara.v9i1.355Keywords:
Era Society 5.0, Artificial Intelligence (AI), pembelajaran kimiaAbstract
ABSTRAK
Pemanfaatan kecerdasan buatan (AI) dalam studi kimia telah membuka pintu menuju era baru dalam pengajaran ilmu kimia. Penggunaan teknologi AI memberikan kapabilitas untuk mengolah sejumlah besar data kimia dengan tingkat akurasi yang tinggi, memperkirakan dengan tepat sifat-sifat molekuler, serta mengembangkan molekul baru secara efisien. Artikel ini menyoroti manfaat dan tantangan AI dalam pembelajaran kimia, mempertimbangkan aspek-aspek seperti peningkatan prediksi sifat-sifat kimia, efisiensi dalam desain molekul, pengelolaan data yang efektif, dan potensi terobosan baru dalam penelitian kimia. Penerapan AI dalam konteks pembelajaran kimia juga membuka peluang baru bagi para pelajar untuk lebih memahami konsep-konsep kimia secara mendalam melalui perangkat pembelajaran yang ditingkatkan, simulasi interaktif, dan prediksi yang akurat. Dengan demikian, kehadiran AI telah mengubah secara mendasar cara pembelajaran kimia dilakukan, menawarkan potensi besar untuk meningkatkan pengalaman belajar siswa dan mendorong kemajuan riset kimia di masa depan
References
Akbar, J. S., Dasna, I. W., & Wonorahardjo, S. (2019). The effect of guided inquiry-based practicum learning and prior knowledge on learning outcomes and science process skills of high school students on solubility and solubility products. Jurnal Pendidikan Sains, 7(3), 80–84.
Akbar, J. S., & Djakariah, D. (2023). Pemanfaatan Media Pembelajaran Berbasis Android Menggunakan Pendekatan Inkuiri Untuk Menguatkan Technological Pedagogical and Content Knowledge (TPACK) Calon Guru. Oxygenius Journal Of Chemistry Education, 5(1), 46–53.
Akgun, S., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI and Ethics, 1–10.
Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983.
Baum, Z. J., Yu, X., Ayala, P. Y., Zhao, Y., Watkins, S. P., & Zhou, Q. (2021). Artificial Intelligence in chemistry: current trends and future directions. Journal of Chemical Information and Modeling, 61(7), 3197–3212.
Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36(5), 411–420.
Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science, 136, 16–24.
Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229–1245.
de Almeida, A. F., Moreira, R., & Rodrigues, T. (2019). Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry, 3(10), 589–604.
Effendy, N., Wahab, Z. A., Kamari, H. M., Matori, K. A., Ab Aziz, S. H., & Zaid, M. H. M. (2016). Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials. Optik, 127(24), 11698–11705.
Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep learning for computational chemistry. Journal of Computational Chemistry, 38(16), 1291–1307.
Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2016). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 2.
Griffen, T. C., Naumann, E., & Hildebrandt, T. (2018). Mirror exposure therapy for body image disturbances and eating disorders: A review. Clinical Psychology Review, 65, 163–174.
Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(206).
Kurniawan, H., Hakim, L., Sanulita, H., Maiza, M., Arisanti, I., Rismawan, M., & Sudipa, I. G. I Daryaswanti, P. I., Kharisma, L. P. I., & Haryani, H. (2023). (2023). TEKNIK PENULISAN KARYA ILMIAH: Cara membuat Karya Ilmiah yang baik dan benar. PT. Sonpedia Publishing Indonesia.
Pongpalilu, F., Hamsiah, A., Raharjo, R., Sabur, F., Nurlela, L., Hakim, L., Waliulu, H., Hasanah, N., Maruddani, R. T. J., & Suroso, S. (2023). Perkembangan Pesera Didik: Teori & Konsep Perkembangan Peserta Didik Era Society 5.0. Sonpedia Publishing Indonesia.
Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R. P., & Pande, V. (2017). Is multitask deep learning practical for pharma? Journal of Chemical Information and Modeling, 57(8), 2068–2076.
Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow Jr, R. A., & Schneider, G. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5), 353–364.
Segler, M. H., & Waller, M. P. (2017). Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry - A European Journal, 23(25), 5966–5971.
Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924.
Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., & Pande, V. (2018). MoleculeNet: a benchmark for molecular machine learning. Chemical Science, 9(2), 513–530.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jakub Saddam Akbar, Djakariah Djakariah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.